Environment Planet Earth 9 Amazing Fractals Found in Nature By Shea Gunther Shea Gunther Writer University of New Hampshire Rochester Institute of Technology University of Southern Maine Shea Gunther is a writer, entrepreneur, and podcaster living in Portland, Maine. He covers topics such as renewable energy, climate change, and nature. Learn about our editorial process Updated May 30, 2024 Gustavo Miranda Holley / Getty Images Environment Weather Outdoors Conservation Fractals are known as geometric shapes that display similarity through the full range of scale—that is, they look the same no matter how big or how small they are. And they are, in fact, ubiquitous in nature. There are many examples of fractals that we encounter in everyday life. Pineapples grow according to fractal laws, and ice crystals form in similar fractal shapes. The repetitive design of broccoli florets is another example of how fractals appear in nature as evolutionary adaptations for efficient growth. Fractals, for example, allow plants to maximize their exposure to sunlight, and they allow cardiovascular systems to efficiently transport oxygen to all parts of the body. Here, we explain 14 fascinating and beautiful examples of fractals in nature. 1 of 9 Romanesco Broccoli Cathy Scola / Getty Images Romanesco broccoli (which, despite its name, is a hybrid between broccoli and cauliflower) grows in a golden spiral, a pattern based on the golden ratio. The spiral gets wider by a factor of phi (φ) for every quarter turn it makes. This vegetable's tendency to produce buds at an accelerating rate causes this spiral pattern and resulting conical shape. The tip gets taller and taller as the broccoli grows. Other golden spirals in nature include spiral galaxies and nautilus shells. 2 of 9 Pine Cones Darrell Gulin / Getty Images Pine cones, also called strobili, are woody, scaly fruits that dangle off evergreens and serve as the trees' seed-bearing organs. You have no doubt noticed the satisfying spiral of their scales, which reflect the seeds they protect. They close tightly when it's damp or cold, then open when it's optimal for seeds to spread in the wind. Again, the fractal design is caused by accelerated growth. It's a natural example of the logarithmic or equiangular spiral. 3 of 9 Succulents LazingBee / Getty Images In plant biology, fractal designs are called spiral phyllotaxy, with the word "phyllotaxy" simply referring to the arrangement of leaves on a plant. There are good reasons for the upturned, coiling leaves of the spiral aloe (Aloe polyphylla) and some Echeveria varieties: They help funnel rainwater to the plant's core and prevent top leaves from shading out bottom leaves. Mathematicians have hypothesized that the spiral pattern of both plants and fingerprints occurred for the same reason, which was to relieve stress. Forces acting in opposing directions cause skin and plant tissue to buckle inward as it grows, they suggested. 4 of 9 Ice and Snow Natalia Sokko / Getty Images No two snowflake designs are alike, but many represent fractals in that the branches of a snowflake spawn their own side branches, and so on. The snowflake could continue like this for an eternity, growing the size of Earth itself, if it weren't to stop accumulating moisture and, eventually, melt away. The most famous fractal snowflake pattern is known as the Koch snowflake, stemming from one equilateral triangle forming another and another and another. This was one of the earliest fractals described. 5 of 9 Tree Branches Catherine MacBride / Getty Images Trees are one of the most quintessential fractals in nature. As they grow, branches develop from the trunks, and each of these branches is like a smaller tree in itself, developing its own branches and their own branches. If you look at a complex tree, you will notice the repetition of the Y shape throughout. This kind of fractal design, like the spiraling of succulents, helps trees optimize their exposure to sunshine and prevents top branches from shading out lower ones. 6 of 9 Copper Crystals Xvision / Getty Images Fractal geometry is also common in chemistry. The phenomenon is expertly demonstrated by copper crystals, which branch out in all directions like tree limbs. Each "twig" is a new growth point; as it branches out, it develops into solid metallic copper. Because of their arborescent nature and unique reddish-brown color, copper crystals are often grown for art. 7 of 9 Rivers Abstract Aerial Art / Getty Images Rivers branch out into streams because water flows from the main artery downhill, but why always in meandering S shapes? While streams can sometimes be established in a straight line, they quickly become bendy as they adapt to disturbances like wildlife dens. Just one disturbance can throw off the flow of a river and cause it to curve throughout. How wide these streams are is also extremely formulaic. The curves, experts have found, are always six times the width of the channel. This kind of self-similarity is characteristic of fractals and the reason why rivers look alike all around the world. 8 of 9 Leaf Veins MirageC / Getty Images Trees are, in fact, fractal from their seeds to their roots to their leaves to their canopy. If you look closely at the veins of the leaves, you'll notice just how self-similar they are. The tiniest ones look like the main midrib (the midline vein), and the midrib looks like the tree trunk with its branches. This is true only of reticulate venation (weblike, not parallel, veins). 9 of 9 Foam banjongseal324 / Getty Images The foam on your morning latte is fractal. In nature, bubbles that occur when ocean waves break or where raindrops have fallen create a self-similar pattern with thin films of liquid separating various-sized gas pockets. Large bubbles are interspersed with small bubbles and those small bubbles are interspersed with even smaller bubbles, and so forth. Outside of nature, you'll see these fractal designs in a soapy bath or while doing dishes in the sink. View Article Sources Shipman, P D, and A C Newell. “Polygonal planforms and phyllotaxis on plants.” Journal of theoretical biology vol. 236,2 (2005): 154-97. doi:10.1016/j.jtbi.2005.03.007 Peng, Sheng-Lung, Rong-Xia Hao, and Souvik Pal. "Proceedings of First International Conference on Mathematical Modeling and Computational Science." Springer Nature. 2021.